Offshore
 Welding
 Materials
 Technology
 Science
 Engineering
 Business & Economics
 Computers
 Reference
 Mathematics
 Architecture
 Photography
 Transportation
 Catalogues
 

Publications » Engineering » Nuclear

An Introduction to Nuclear Waste Immobilisation,

Price £115.00

temporarily out of stock

An Introduction to Nuclear Waste Immobilisation,

M.I. Ojovan, W.E. Lee

ISBN 0080444628
Pages 315

Description
Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies.

Contents
1. Introduction to immobilisation 1.1 Introduction 1.2 The importance of waste 1.3 Radioactive waste 1.4 Recycling 1.5 Waste minimisation 1.6 Immobilisation 1.7 Time frames 1.8 Bibliography 2. Nuclear decay 2.1. Nuclear decay 2.2. Decay law 2.3. Radioactive equilibrium 2.4. Activity 2.5. Alpha decay 2.6. Beta decay 2.7. Gamma decay 2.8. Spontaneous fission 2.9. Radionuclide characteristics 2.10. Bibliography 3. Contaminants and hazards 3.1. Elemental abundance 3.2. Migration and redistribution 3.3. Hazard potential 3.4. Relative hazard 3.5. Real hazard concept 3.6. Form factors that diminish hazard 3.7. Bibliography 4. Heavy metals 4.1. Metallic contaminants 4.2. Biogeochemical cycle 4.3. Heavy metals 4.4. Heavy metals in living species 4.5. Lead 4.6. Mercury 4.7. Cadmium 4.8. Arsenic 4.9. Bibliography 5. Naturally occurring radionuclides 5.1. NORM and TENORM 5.2. Primordial radionuclides 5.3. Cosmogenic radionuclides 5.4. Natural radionuclides in igneous rocks 5.5. Natural radionuclides in sedimentary rocks and soils 5.6. Natural radionuclides in sea water 5.7. Radon emissions 5.8. Natural radionuclides in the human body 5.9. Bibliography 6. Background radiation 6.1. Radiation is natural 6.2. Dose units 6.3. Biological consequences of irradiation 6.4. Background radiation 6.5. Bibliography 7. Nuclear waste regulations 7.1. Regulatory organisations 7.2. Protection philosophies 7.3. Regulation of radioactive materials and sources 7.4. Exemption criteria and levels 7.5. Clearance of materials from regulatory control 7.6. Double standards 7.7. Dose limits 7.8. Control of radiation hazards 7.9. Bibliography 8. Principles of nuclear waste management 8.1. International consensus 8.2. Objective of radioactive waste management 8.3. Fundamental principles 8.4. Comments on the fundamental principles 8.5. Ethical principles 8.6. Joint convention 8.7. Bibliography 9. Sources and characteristics of nuclear waste 9.1. Key waste characteristics 9.2. Classification schemes 9.3. Examples of waste classification 9.4. Sources of waste 9.5. Front end and operational NFC waste 9.6. Back end Open NFC waste 9.7. Back end Closed NFC waste 9.8. Back end NFC decommissioning waste 9.9. Non-NFC wastes 9.10. Accidental wastes 9.11. Bibliography 10. Short-lived waste radionuclides 10.1. Introduction 10.2. Tritium 10.3. Cobalt-60 10.4. Strontium-90 10.5. Caesium-137 10.6. Bibliography 11. Long-lived waste radionuclides 11.1. Introduction 11.2. Carbon-14 11.3. Technetium-99 11.4. Iodine-129 11.5. Plutonium 11.6. Neptunium-237 11.7. Criticality 11.8. Bibliography 12. Management and characterisation of radioactive waste 12.1. Management roadmaps 12.2. Predisposal 12.3. Disposal 12.4. Characterisation 12.5. Bibliography 13. Pre-treatment of radioactive wastes 13.1. Pre-treatment definition 13.2. Collection and segregation 13.3. Adjustment 13.4. Size reduction 13.5. Packaging 13.6. Decontamination 13.7. Bibliography 14. Treatment of radioactive wastes 14.1. Treatment objectives 14.2. Treatment of aqueous waste 14.3. Treatment of organic liquid wastes 14.4. Treatment of solid wastes 14.5. Treatment of gaseous and airborne effluents 14.6. Partitioning and transmutation 14.7. Bibliography 15. Immobilisation of radioactive wastes in cement 15.1. Waste immobilisation 15.2. Wasteform leaching behaviour 15.3. Immobilisation techniques 15.4. Immobilisation in hydraulic cements 15.5. Hydraulic cements 15.6. Cement hydration 15.7. Hydrated cement composition 15.8. Cementation of radioactive wastes 15.9. Modified and composite cement systems 15.10. Cementation technology 15.11. Acceptance criteria 15.12. Bibliography 16. Immobilisation of radioactive wastes in bitumen 16.1. Bituminisation 16.2. Composition and properties of bitumen 16.3. Bituminous materials for waste immobilisation 16.4. Bituminisation technique 16.5. Acceptance criteria 16.6. Bitumen versus cement 16.7. Bibliography 17. Immobilisation of radioactive wastes in glass 17.1. Vitrification 17.2. Immobilisation mechanisms 17.3. Retention of radionuclides 17.4. Nuclear waste glasses 17.5. Nuclear waste glass compositions 17.6. Borosilicate glasses 17.7. Role of boron oxide 17.8. Role of intermediates and modifiers 17.9. Difficult elements 17.10. Phosphate glasses 17.11. Glass composites 17.12. Vitrification processes 17.13. Cold crucible melters 17.14. Vitrification technology 17.15. Calcination 17.16. Radionuclide volatility 17.18. Acceptance criteria 17.19. Bibliography 18. New immobilising hosts and technologies 18.1. New approaches 18.2. Crystalline wasteforms 18.3. Polyphase crystalline wasteforms: Synroc 18.4. Polyphase crystalline waste forms: composites 18.5. New technological approaches 18.6. Metal matrix immobilisation 18.7. Bibliography 19. Nuclear waste disposal 19.1. Disposal/Storage concepts 19.2. Retention times 19.3. Multibarrier concept 19.4. Disposal/Storage options 19.5. Role of the EBS 19.6. Importance of geology 19.7. Transport of radionuclides 19.8. Disposal/Storage experience 19.9. Acceptance criteria 19.10. Bibliography 20. Performance assessment 20.1. Safety and performance assessments 20.2. Safety requirements 20.3. Safety case content 20.4. Cement performance 20.5. Bitumen performance 20.6. Glass performance 20.7. Radiation effects 20.8. Research laboratories 20.9. Conclusion 20.10. Bibliography