Offshore
 Welding
 Materials
 Technology
 Science
 Engineering
 Business & Economics
 Computers
 Reference
 Mathematics
 Architecture
 Photography
 Transportation
 Catalogues
 

Publications » Science » Ecology

HANDBOOK OF INFRA-RED DETECTION TECHNOLOGIES

Price £155.00

temporarily out of stock

HANDBOOK OF INFRA-RED DETECTION TECHNOLOGIES

M. Henini, M. Razeghi

ISBN 1856173887
Pages 256

Description
The use of lasers which emit infra-red radiation and sophisticated detectors of IR radiation is increasing dramatically: they are being used for long-distance fibre-optic communications and remote environmental monitoring and sensing. Thus they are of interest to the telecommunications industry and the military in particular. This book has been designed to bring together what is known on these devices, using an international group of contributors.

Contents
Chapter 1 - Introduction (M. Henini, M.Razeghi) Chapter 2 - Comparison of photon and thermal detector performance (A. Rogalski) 2.1 Introduction 2.2 Fundamental limits to infrared detector performance 2.2.1 Photon detectors 2.2.2 Thermal detectors 2.2.3 Comparison of the fundamental limits of photon and thermal detectors 2.3 Focal plane array performance 2.4 FPAs of photon detectors 2.4.1 InSb photodiodes 2.4.2 HgCdTe photodiodes 2.4.3 Photoemissive PtSi Schottky-barrier detectors 2.4.4 Extrinsic photoconductors 2.4.5 GaAs/AIGaAs QWIPs 2.4.6 QWIP versus HgCdTe in the LWIR spectral region 2.5 Dual-band FPAs 2.5.1 Dual-band HgCdTe 2.5.2 Dual-band QWIPs 2.6 FPAs of thermal detectors 2.6.1 Micromachined silicon bolometers 2.6.2 Pyroelectric arrays 2.6.3 Thermoelectric arrays 2.6.4 Status and trends of uncooled arrays 2.7 Conclusions Appendix References Chapter 3 - GaAs/AIGaAs based quantum well intrared photodetector focal plane arrays (S.D. Gunapala, S.V. Bandara) 3.1 Introduction 3.2 Detectivity D comparison 3.3 Effect of nonuniformity 3.4 640x512 pixel long-wavelength portable QWIP camera 3.5 640x486 long-wavelength dual-band imaging camera 3.6 640x512 pixel broad-band QWIP imaging camera 3.7 640x512 spatially separated four-band QWIP focal plane array 3.8 QWIPs for low background and low temerature operation 3.9 Summary Acknowledgements References Chapter 4 - GaInAs(P) based QWIPs on GaAs, InP and Si substrates for focal plane arrays (J. Jaing, M. Razeghi) 4.1 Introduction 4.1.1 Overview of infrared detector 4.1.2 Quantum well infrared photodetector 4.1.3 State-of-the-art 4.2 Fundamentals of QWIP 4.2.1 Intersubband absorption 4.2.2 QWIP parameters 4.2.3 Comparison of n-type and p-type QWIPs 4.2.4 Growth, fabrication and device characterization of a single QWIP device 4.3 Fabrication of infrared FPA 4.3.1 Infrared FPA fabrication steps 4.3.2 Indium solder bump fabrication steps 4.3.3 ROIC for infrared FPA 4.4 p-type QWIPS 4.4.1 p-type MWIR QWIPS 4.4.2 p-type LWIR QWIPS 4.5 n-type QWIPS 4.5.1 n-type LWIR QWIPS 4.5.2 n-type VLWIR QWIPS 4.5.3 Multi-colour QWIPS 4.6 Low Cost QWIP FPA integrated with Si substrate 4.6.1 Overview of QWIPs on Si 4.6.2 Growth of GaInAs/InP QWIP-on-Si 4.6.3 Detector performance of GaInAs/InP QWIP-on-Si 4.6.4 How to fabricate a monolithic integrated FPA with Si substrate 4.7 New approaches of QWIP 4.8 Conslusions References Chapter 5 - InAs/(Galn)Sb superlattices: a promising material system for infrared detection (L. Burkle, F. Fuchs) 5.1 Introduction 5.2 Materials properties 5.2.1 Bandstructure of InAs/(BaIn)Sb superlattices 5.2.2 X-ray characterization 5.2.3Interfaces 5.2.4 Sample homogeneity 5.2.5 Residual doping 5.3 Superlattice photodiodes 5.3.1 Diode structure 5.3.2 Diode processing 5.3.3 Photo response 5.3.4 I-V measurements 5.3.5 C-V measurements 5.3.6 Noise measurement 5.4 Summary and outlook References Chapter 6 - GaSb/InAs superlattices for infrared FPAs (M. Razeghi, H. Mohseni) 6.1 Type-II heterostructures 6.1.1 Historical review 6.1.2 Definition of type-II band alignment 6.1.3 Features of type-II band alignment and their applications 6.2 Type-II infrared detectors 6.2.1 Principle of operation 6.2.2 Band structure of type-II superlattices 6.2.3 Optical absorption in type-II superlattices 6.2.4 Modeling and simulation of type-II superlattices 6.3 Experimental results from type-II photoconductors 6.3.1 Uncooled type-II photoconductors in the &lgr;=8-12 &mgr;m range 6.3.2 Cooled type-II photoconductors for &lgr; ⩽ 20 &mgr;m 6.4 Experimental results from type-II photodiodes 6.4.1 Uncooled type-II photodiodes in the &lgr;=8-12 &mgr;m range 6.4.2 Cooled type-II photodiodes in the &lgr; ⩽ 14 &mgr;m range 6.5 Future work References Chapter 7 - MCT properties, growth methods and characterization (R.E. Longshore) 7.1 Preface 7.2 Introduction 7.2.1 Brief history 7.3 MCT Characteristics and material properties 7.3.1 Composition and crystal structure 7.3.2 Bandgap 7.3.3 Intrinsic carrier concentration 7.3.4 Doping and impurities 7.3.5 Carrier mobility 7.3.6 Carrier lifetime 7.3.7 Defects 7.4 MCT crystal growth methods 7.4.1 Phase diagrams 7.4.2 Bulk growth 7.4.3 Expitaxial growth 7.5 Material characterization methods 7.5.1 Material composition 7.5.2 Measurements of carrier concentration and mobility 7.6 Summary References Chapter 8 - HgCdTe 2D arrays - technology and performance limits (I.M. Baker) 8.2 Introduction 8.1.1 Historical perspective 8.2 Applications and sensor design 8.3 Comparison of HgCdTe with other 2D array materials 8.4 Multiplexers for HgCdTe 2D arrays 8.4.1 Photocurrent injection techniques 8.4.2 Scanning architectures 8.4.3 Future trends 8.5 Theoretical foundations for HgCdTe array technology 8.5.1 Thermal diffusion current in HgCdTe 8.5.2 Leakage currents 8.5.3 Photocurrent and quantum efficiency 8.6 Technology of HgCdTe photovoltaic devices 8.6.1 Materials growth technology 8.6.2 Junction forming techniques in homojunction arrays 8.6.3 Device structures 8.7 Measurements and figures of merit for 2D arrays 8.7.1 NETD - theoretical calcuation 8.7.2 NETD - experimental measurement 8.7.3 Relationship of NETD with other figures of merit 8.8 HgCdTe 2D arrays for 3-5 &mgr;m (MW) band 8.9 HgCdTe 2D arrays for 8-12 &mgr;m (LW) band 8.9.1 Array design issues 8.9.2 Introduction to performance limitations in LW arrays 8.9.3 Cause of defective elements in HgCdTe 2D arrays 8.10 HgCdTe 2D arrays for the 1-3 &mgr;m (SW) band 8.11 Towards GEN III detectors 8.11.1 Two-colour array technology 8.11.2 Higher operating temperature (HOT) device structures 8.11.3 Retina level processing 8.12 Conclusion and future trends Acknowledgement References Chapter 9 - Status of HgCdTe MBE technology (T.J. de Lyon, R.D. Rajavel, J.A. Roth, J.E. Jensen) 9.1 Introduction 9.2 HgCdTe MBE equipment and process sensors 9.2.1 Vacuum equipment and sources 9.2.2 HgCdTe MBE process senosors 9.3 HgCdTe MBE growth process 9.3.1 Substrate preparation 9.3.2 Growth conditions 9.3.3 Defects 9.3.4 Doping 9.4 Device applications 9.4.1 Multispectral HgCdTe infrared detectors 9.4.2 Near-infrared avalanche photodiodes 9.4.3 High-performance MWIR detectors 9.4.4 Large-format arrays on silicon substrates Acknowledgements References Chapter 10 - Silicon infrared focal plane arrays (M. Kimata) 10.1 Introduction 10.2 Cooled FPAs 10.2.1 Schottky-barrier FPAs 10.2.2 Heterojunction internal photoemission FPAs 10.3 Uncooled FPAs 10.3.1 Silicon On Insulator (SOI) diode FPAs 10.3.2 Si-based resistance bolometer FPAs 10.3.3 Thermopile FPAs 10.4 Summary References Chapter 11 - Infrared silicon/germanium detectors (H. Presting) 11.1 Introduction 11.2 Near Infrared detector 11.2.1 General operation principle 11.2.2 Detector growth and fabrication 11.2.3 Results and discussion 11.3. Mid-and long-wavelength SiGe IR detectors 11.3.1 Introduction 11.3.2 Principle of operation of HIP detectors 11.3.3 Growth and material characterization 11.3.4 Experimental results and discussion 11.3.5 Calculation of optical properties of SiGe HIP detectors 11.3.6 Résumeé and outlook for SiGe MWIR detectors Acknowledgements References Chapter 12 - PolySiGe uncooled microbolometers for thermal IR detection (C. Van Hoof, P. De Moor) 12.1 Introduction 12.1.1 Uncooled resistive microbolometers 12.1.2 Microbolometer terminology 12.1.3 Microbolometer process options 12.2 Structural, thermal and electrical properties of polySiGe 12.2.1 Deposition of polySiGe 12.2.2 Structural properties 12.2.3 Thermal properties 12.2.4 Electrical properties 12.2.5 High-temperature vs. low-temperature polySiGe 12.3 PolySiGe bolometer pixel 12.3.1 Process development 12.3.2 Absorber comparison and trade-offs 12.3.3 Pixel optimization 12.3.4 Vapor HF processing 12.3.5 Stiffness enhancement techniques 12.4 Readout and system development 12.4.1 Introduction 12.4.2 Readout of polySiGe bolometer arrays 12.5 Zero-level vacuum packaging 12.5.1 Introduction 12.5.2 Indent-Reflow Sealing using metal solder 12.5.3 Zero-level packaging using BCB 12.5.4 Hermeticity testing using microbolometers 12.6 Conclusions and outlook Acknowledgements References Chapter 13 - Fundamentals of spin filtering in ferromagnetic metals with application to spin sensors (H.J. Drouhin) 13.1 Introduction 13.2 Theoretical IMFP variation 13.2.1 The simplest model - mathematical bases of the calculation 13.2.2 A more complete treatment 13.2.3 An intuitive derivation 13.2.4 Comparison with the Schönhense and Siegmann model 13.3 Experimental study of ▴ &sgr; 13.4 Spin precession and spin filters 13.4.1 Density-operator formalism 13.4.2 Electron transmission through ferromagnetic bilayers 13.4.3 The bilayer with collinear magnetizations 13.4.4 The bilayer with perpendicular magnetizations 13.5 Discussion and conclusion Acknowledgements References